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Abstract 

Application domains, such as multimedia, databases, and parallel computing, require operating system services with 
high performance and high functionality. Existing operating systems provide fixed interfaces and implementations to 
system services and resources. This makes them inappropriate for applications whose resource demands and usage 
patterns are poorly matched by the services provided. The SPIN operating system enables system services to be defined 
in an application-specific fashion through an extensible microkernel. It offers fine-grained control over a machine's 
logical and physical resources to applications through run-time adaptation of the system to application requirements. 

1    Introduction 

This white paper describes an operating system called SPIN that will address the requirements of the coming generation 
of resource-intensive applications. In SPIN, these requirements are achieved through the use of application-specific 
services. An application-specific service is one that precisely satisfies the functional and performance requirements of 
an application or class of applications. 

The key to application-specific services is an adaptable kernel that enables system resources to be efficiently and 
safely managed by the application. By efficient, we mean that capable applications execute more quickly and with less 
programming complexity than when using a more conventional platform, such as Ultrix or Mach. By safe we mean 
that multiple applications may run at the same time, yet be protected from one another through hardware and software 
firewalls. 

SPIN supports adaptability through an extensible microkernel that safely executes application-specific code either 
in the kernel or at user-level. In SPIN, an application specifies a service as an implementation partitioned into three 
components: an application-level component, which is linked into the application's address space, a kernel-level 
component, which provides fast, specialized access to in-kernel services, and a user-level server component which 
manages long-lived service state. The way in which the service is partitioned is determined by its safety, sharing, and 
performance requirements. 

SPIN is structured around an extensible microkernel architecture. The microkernel exports interfaces that offer 
applications fine-grained control over a few fundamental system abstractions, such as processors, memory, and I/O. 
SPIN is extensible in that application programs and servers can install program sequences called spindles that execute 
in the kernel in response to hardware and software events, such as processor exceptions and context switches. Spindles 
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SPIN supports adaptability through an extensible microkernel that safely executes application-specific code either 
in the kernel or at user-level. In SPIN, an application specifies a service as an implementation partitioned into three 
components: an application-level component, which is linked into the application's address space, a kernel-level 
component, which provides fast, specialized access to in-kernel services, and a user-level server component, which 
manages long-lived service state. The way in which the service is partitioned is determined by its safety, sharing, and 
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enable applications to define customized kernel interfaces and implementations with which application-specific services 
Can be built. 

1.1    Motivation 

The next decade will bring a radical change to the way we do computing as'applications that were at one time 
considered niche services such as large distributed databases, high-quality multimedia, and programs for massively 
parallel systems, become common. Although the application demands are changing substantially, the operating systems 
base on which those applications run is not. Consequently, application performance is frequently limited by today's 
operating systems, which provide an inadequate interface to computer system services ' 

The key problem facing operating systems is how to support efficiently a range of applications with widely varying 

riZ H fS Znent VinUal mem°ry PaSe-rePlace™nt policies are based on application mixe! 
from the 1970 s and early 1980's [Babaoglu & Joy 81] that have good reference locality. These policies though are 
poorly suited for newer applications, such as information retrieval and multimedia, where page access patterns are 
seemingly random, or strictly sequential and temporally constrained [Kearns & DeFazio 89] Similarly current file 
system implementations assume that most files are accessed sequentially [Ousterhout et al. 85]. However important 
applications such as information retrieval have file access patterns that are quite non-sequential [Gray & Reuter 921 
As a result, many database systems manage in-core disk caches manually because existing operating systems do such 
a poor job of meeting their needs [Stonebraker 81]. We believe that other performance-critical applications will follow 
the same route because no current operating system allows system resources to be efficiently and safely managed 
through tailored interfaces and implementations. 

The resource demands of current and future applications can be met by an operating system architecture in which 
services can be implemented on an application-specific basis. As a consequence, a service can be defined Ion* after 
the operating system has been written, compiled, and shipped as product. The service, which can come bundled 
with the aprncation, relies on low-level interfaces exported by the operating system kernel. These interfaces, which 
themselves can be tailored, enable the service to allocate and manage system resources such as CPUs, disks networks 
and memory. ' ' 

Contemporary commercial and research operating systems provide interfaces that are inadequate for use by 

oPS10s"s?emfiC SerViC6S' By "inadequate'" we mean that one of the followin8 statements can be made about the 

. there are no interfaces through which application-specific services can exercise direct control over the logical 
and physical resources, or e 

• some interfaces for resource management exist, but they are clumsy, or inefficient, or both, or 

. all applications have unconstrained access to resources, providing good performance when programs are well- 
behaved, but poor system stability when they are not. 

In the first case, applications must suffer with whatever interfaces and abstractions are provided by the operating 
system In the second case, the "right" abstraction can be realized, but at an intolerable performance cost Finally in 
the third case, any abstraction can be realized for a single program, but isolation between programs is not possible In 
all three cases, a mismatch between the interfaces exported by the operating system kernel and those required by an 
application-specific service make such services infeasible. 

1.2    Adaptability in SPIN 

Our goal in building SPIN is to provide applications with an adaptable kernel platform on top of which application- 
specific services can be built. The ideas underlying SPIN stem from research over the last several years that has 
addressed some of the fundamental performance problems that arise in modern operating system services includin» 
interprocess communication, synchronization, thread management, networking, virtual memory, and cache mant 
agement [Draves et al. 91, Bershad et al. 92, Stodolsky et al. 93, Bershad 93, Yuhara et al. 94, Maeda & Bershad 93 



Thekkath et al. 93, Feiten 92, Young 89, McNamee & Armstrong 90, Anderson et al. 92, Wheeler & Bershad 92]. In 
each case, the interfaces exported by a service were poorly matched to the needs of important applications. The solution 
to the performance problem came from enabling applications to adapt the behavior (interface and implementation) of 
system services to realize maximum performance. Each change, though, required careful and deliberate modifications 
of the operating system kernel. 

In SPIN, adaptability is achieved with an extensible microkernel that allows an application to specify a service as 
an implementation partitioned into an application component, an application-specific kernel component, and possibly a 
user-level server component. The microkernel provides lightweight and portable abstractions of the physical hardware 
such as threads and virtual address spaces which ire used by the higher-level services. By allowing applications to 
participate in the implementation of high-level services, we permit applications to make informed decisions about their 
resource requirements. By placing the implementation within an application component (application-level library), or 
a kernel-level code sequence, the service can be accessed with low latency. 

The application-specific kernel components are called spindles (SPIN Dynamically Loaded Extensions), and enable 
applications to define the precise interface and implementation for kernel services that they require. Spindles enable 
a service to be partitioned across the user/kernel boundary in the most efficient manner that still satisfies its safety 
and sharing requirements. Specifically, installing code at the kernel level allows for flexible and rapid response to 
system hardware and software events. For example, an application program can install a code sequence that runs 
each time a thread from that program's address space is preempted in response to an interrupt, a time-slice event, or a 
higher-priority thread. In the first two cases, the program can ensure system-wide or application-wide invariants about 
preemptability. In the third case, the application can enforce constraints that deny priority inversion. Although the 
code sequences execute in kernel-mode, their safety is verified by a trusted compiler. 

1.3 Alternatives 

Microkernel technology has been promoted as a solution to many of the adaptability requirements of demanding 
applications [Accetta et al. 86], and in the past few years there has been dramatic growth in the number and quality 
of microkernels [Phelan et al. 93, Hildebrand 92, Rozier et al. 88]. Current practice is to structure a microkernel- 
based operating system as one or more server address spaces that collectively implement operating system ser- 
vices [Golub et al. 90, Julin et al. 91, Rozier et al. 88, Khalidi & Nelson 93, Hildebrand 92]. However, it is often as 
difficult to modify a service in another address space as it is to modify one placed in the kernel, diminishing many of 
the flexibility advantages that favor microkernel architectures. In addition, the communication overhead incurred when 
contacting servers can result in poor performance [Maeda & Bershad 92, Maeda & Bershad 93]. These facts make it 
quite difficult to tailor an operating system service to the requirements of a particular resource intensive application 
using conventional microkernel technology. 

1.4 The rest of this paper 

The rest of this paper is.structured as follows. In Section 2 we describe the SPIN architecture. In Section 3 we discuss 
the system's extension language and compiler. In Section 4 we show how applications in several domains are facilitated 
by SPIN. In Section 5 we describe related work. In Section 6 we discuss the system's status and directions. 
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2    SPIN: A system for application-specific services 

In this section we discuss the overall system composition of SPIN and present a concrete example of its use in 
structuring a service. Later, in Section 4 we broaden our discussion to show how SPIN can be applied to increase 
efficiency across a range of demanding application domains. 

2.1    Specialization 

An operating system kernel offers two general functions: it provides abstractions of the system's physical and logical 
resources, and it implements a set of management policies for those resources. In the SPIN microkernel the two 
functions are split. Low-level resource controllers provide lightweight and portable abstractions of the physical 
hardware, such as threads and virtual address spaces. They define interfaces providing access to a machine's physical 
and logical resources, including a set of global resource allocation interfaces that allow applications to allocate and 
deallocate system resources while guaranteeing integrity and progress in cases of high load. The controllers themselves 
though do not contain any management policy. Policies are provided either by in-kernel application-specific services 
or by dei..ult kernel services. For applications that do not require application-specific management policies SPIN is 
an ordinary microkernel with a set of well-defined general purpose services. For applications with special needs SPIN 
provides a set of interfaces to low-level resources that may be combined in an arbitrary way to achieve the required 
level of efficiency. 

All management policies are defined by embedded implementations called spindles. A spindle is a code sequence 
that is installed dynamically into the operating system kernel by or on behalf of an application. Spindles run in response 
to a particular system event, such as a system call, an exception, or a context switch. They can also be activated by 
user code or by events generated within other spindles. 

All interaction between an application (or, more likely, an application-level library) and the operating system is 
through spindles. The spindle interfaces allow applications to manipulate at a fine-grain level the resources granted by 
the kernel controllers. Spindles enable applications to define new system calls through a composition of internal kernel 
interfaces. They also enable applications to discover changes in the state of the hardware and the operating system 
thefeby enabling them to react to changes in resource allocations and demands with low-latency and high-efficiency 
In effect, the application can specialize the operating system kernel to provide the type of service or management 
policy required, without paying the overhead of crossing several interface and protection boundaries at each service 
invocation. 

2.2    Components 

The SPIN operating system consists of a set of low-level resource controllers with associated interfaces a set of pre- 
defined spindles offering default system functions, and machinery to install and run spindles. Three kernel mechanisms 
enable these components: one for associating spindles with particular specific events in the kernel, one for executing 
at kernel-level, those spindles associated with an event when that event occurs, and one that verifies the integrity of 
spindles when they are installed into the kernel. 

Figure 1 illustrates the basic structure otSPIN. Although the system's structure is similar to that of a traditional 
microkernel, providing interfaces to services such as threads, address spaces, and memory, the similarity is only 
superficial. In a conventional microkernel, the highest-level system services are implemented as a set of layered 
abstractions, with the highest layer exporting a few basic interfaces. Applications built to the microkernel interface are 
consequently constrained to using the services at the highest layer. While these services may be composed to provide a 
rich set of higher-level abstractions (for example, a UNIX process under Mach is defined through a composition of an 
address space, some memory, and a thread), the low-level behavior of each abstraction is essentially fixed In contrast 
using SPIN, high-level interfaces required by applications and application-specific services are defined in terms of the 
lower-level interfaces available to spindles. A program defines its own interface to the kernel through a spindle that 
executes in the kernel. In turn, that spindle has access to a large set of kernel interfaces. For example, a program can 
construct a spindle that provides an interface for -eating and then starting a new thread of control. The spindle itself 
uses more primitive interfaces (create thread, a:    : ae stack, set initial thr-d state, start thread) to accomplish this 
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Figure 1:  Tins figure illustrates the basic structure of services on the SPIN microkernel.   Services are split into 
external servers that maintain global service information, application-specific libraries that provide fast access paths' 
to services, and spindles that allow low latency access to kernel resources. In the figure, each service is depicted as 
having these three components. A trusted compiler and code verifier ensures that spindles are unable to compromise 
the integrity of the system. (Different stipple patterns denote different services.) 

At a basic level, a spindle can be used to define the implementation of a traditional system call, serving as a wrapper 
around underlying kernel services. At a more sophisticated level, a spindle can enable an application to monitor and 
react to changes in global resource allocation without involving costly transfers to user-level code. With this structure, 
high-level operating system services, such as filing, networking, virtual memory management, and fine-grained thread 
management, can be efficiently implemented as part of each application's address-space instead of as part of the kernel 
or a dedicated server. 

2.3    Service partitioning 

Microkernel-based systems reflect a tension between modularity and efficiency. Services are moved out of the kernel to 
user-space to achieve higher modularity, but additional overhead for communication is incurred whenever the services 
are accessed. This overhead can be greatly reduced in SPIN by allowing parts of a service to be located in the address 
spaces that use them. Figure 2 shows the differences between the decomposition of services on a microkernel and 
under SPIN and their influence on communication overhead in a system. There are three cases illustrated. 

case I: Placing parts of a server within an application in the form of an application-level library allows application 
requests to be served without crossing any protection boundaries. This optimizes system performance for 
common operations that do not need kernel interaction or access to data in other domains. 

case II: Operations that require tight integration with the kernel can be installed as a spindle, and thus may access 
internal kernel interfaces without incurring the overhead of protection boundary crossings. 



case III: Installing server code ;u ihe kernel level allows for flexible and rapid response to system hardware and 
software events without costly upcalls to a server. 

Conventional microkernels with fixed interfaces can use the first optimization, but the other two require new 
capabilities that are provided by the spindle mechanism. 
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Figure 2: Comparison of a traditional microkernel server with a partitioned service in SPIN. 

2.4    An example 

As an example of how components of SPIN fit together, consider the structure of a user-level virtual memory man- 
ager [McNamee & Armstrong 90, Harty & Cheriton 92]. A user-level virtual memory manager enables an application 
to control the set and contents of physical page frames that are currently backing a given piece of virtual memory An 
application can request, say, 100 pages of physical memory from the system's physical page manager. Those pages are 
granted in bulk, and the application creates spindles that rely on fine-grained kernel interfaces to the physical mapping 
layer to control access and to shuffle pages between disk and memory. By defining a spindle to handle page faults 
the pager can inexpensively be notified of changes to a page's access patterns. For example, the pager can implement 
LRU-clock with simulated reference bits by defining a spindle that sets a bit in the application's address space on a 
reference to a page by defining a spindle associated with the page-write trap that sets a bit in the applications The 
pager can even define logical pages that are smaller than the machine's physical pages, detecting writes, for example 
to sub-pages in order to collect fine-grained reference information [Hosking & Moss 93]. 



existing operating system mechanisms (such as kernel threads) can be difficult. In previous work, we addressed these 
difficulties with a mechanism called scheduler activations. Scheduler activations rely on the operating system kernel 
to convey information about kernel-level scheduling events to applications [Anderson et al. 92]. 

Multimedia 

Multimedia applications, such as video-on-demand, video-conferencing, virtual reality, and interactive learning, impose 
special demands on the scheduling, communication and memory allocation policies of an operating system. In general, 

. real-time systems implement a simple fixed priority ordering [Hildebrand 92]. Conventional operating systems, 
however, support either a single scheduling policy to arbitrate among competing activities, or multiple policies that 
promote fairness but favor interactive activities [Black 90]. Some systems provide multiple scheduling policies 
but only from among a few fixed policies set at kernel-build time [Tokudaet al. 90]. Flexible, application-specific 
scheduling, though, has been shown to provide critical performance benefits for both time-constrained and non real-time 
activities [Anderson 93, Anderson et al. 92]. 

In terms of memory resources, multimedia applications use large amounts of data (audio and video streams) with 
access patterns that interact poorly with locality-based page replacement algorithms [Anderson 93, Nakajima et al. 92], 
Application-specific virtual memory management policies can solve this problem. High-level information about media 
direction, edit cuts, and temporal constraints are directly relevant to page replacement decisions. When presenting 
a video stream, for example, an application can sequentially prefetch video frames directly from disk into memory- 
resident buffers. Information about synchronization between media streams can also be specified to prevent unnecessary 
replacement of pages that are interdependent. 

Databases and information retrieval 

Databases and information retrieval applications impose severe demands on the filing and memory services of an 
operating system. The speed of disks and memory, which are at the base of any file service, have not kept pace with 
processor speeds; any leverage that can be applied to increase their performance is critically important to end-application 
performance. 

Filesystem performance can benefit from application-specific information in several ways. The application can 
provide hints about future usage to the filesystem to help it schedule disk traffic [Gibson et al. 92]. This can result in 
more effective prefetching policies and lower buffer cache miss rates. An effective prefetching policy can also remove 
virtual memory remapping operations from the critical path, since disk blocks are already mapped into the application 
address space when they are needed. In addition, the application can inform the kernel about how it will use the buffer 
cache, so that the kernel can make informed decisions about physical memory allocation [Stonebraker 81]. 

4.1    Some application-specific services enabled by SPIN 

The application domains described in the previous subsection can be enabled by operating system services that are 
customized to the program's needs. Below, we detail some specific techniques. 

Extensible interprocess communication 

An extensible IPC interface enables applications and servers to define their own semantics for interprocess communi- 
cation enabling the best tradeoff between performance and functionality. To receive a message, an application installs 
a spindle that can recognize a message destined for it as the receiver. To send a message, an application formats the 
message for the spindle, traps to the kernel, and presents the kernel with a block of data intended for a particular 
address space, which is represented in the kernel by a spindle waiting to receive a message. Upon executing the 
spindle, the kernel delivers data to the corresponding receiver. The responsibility for interpreting the contents of the 
message belongs with the receiver. 



• compiler technology, such as intraprocedural data flow analysis, symbolic evaluation, and inline expansion These 
techn.ques can eliminate much of the overhead of the extension language: the compiler can inline-expand'calls in 
spindles to kernel operations, replacing them with direct data structure accesses or even constants and the compiler 
can attempt to evaluate predicate expressions guarding kernel operations in the context of the spindle code preceding 
the call. With this technology, spindles can be installed and executed quickly. 

Advanced compilation technology, such as partial evaluation [Jones et al. 89, Consel 90, Weise et al 91 Jones et al 931 
can blend together multiple spindle routines and the surrounding kernel code to reduce the overheads of maintaining 
large numbers of spindles. It can also reduce the cost of crossing from the kernel's execution envhv-.ment to the 
spindle s. Partial evaluation is a program transformation technique that specializes program code with respect to some 
of us argument values. In our context, for example, if several spindles are associated with the same kernel event the 
compiler can specialize the event dispatcher to produce a single code sequence tuned just for the spindles installed ai 
that time. 

4   SPIN and application domains 

Application-specific techniques enabled by SPIN'S structure are relevant to application domains that have high per- 
formance requirements. Examples include general purpose high-performance computing, multicomputer-based mul- 
tiprocessing, shared memory multiprocessing, multimedia, and databases/information retrieval. The performance of 
tradmonal operating system services for these problems has been poor, either for the demanding application or all 
other applications running at the same time. In this section, we describe the operating system requirements of these 
domains and d.scuss the role of application-specific solutions. We then describe a number of key techniques enabled 
by SPIN that satisfy these requirements. 

General purpose high-performance computing 

Many operating system services such as synchronization and scheduling, virtual memory and interprocess com- 
munication are generally important for any application requiring high performance. For example, any program 
that uses threads internally as a program structuring device [Hauser et al. 93] can benefit from fast synchroniza- 
tion [Bershad et al. 92]. Any program that interacts with an operating system server can benefit from fast interprocess 
communication [Bershad et al. 90, Draves et al. 91]. Many applications have become sensitive to the degree to which 
their memory access patterns are satisfied by an architecture's fast memory system (cache and translation lookaside 
buffer) [Chen & Bershad 93]. For example, some compilers now use static blocking algorithms based on the cache 
size in order to maximize the cache hit rate during well-formed data intensive computations [Lam et al 91] Programs 
with irregular structure must rely on more dynamic information, for example, cache, TLB, or pa°e fault rates These 
miss rates may be easy to determine, but potentially expensive to communicate to the application. Application-specific 
code in the kernel that can track a program's memory system behavior and provide guidance and feedback to the 
runtime can result in improved program performance. 

Parallel processing 

Application-specific communication protocols [Feiten 92], scheduling, and virtual memory management can improve 
the performance of parallel programs running on a distributed memory multicomputer. Fast communication is required 
to transmit messages from one processor to another. Appropriate scheduling and synchronization support can ensure 
that all threads m a multicomputer program run at the same time to avoid unnecessary stalls due to scheduling 
anomalies [Zahorjan & McCann 90, Ousterhout 84]. Application-specific virtual memory services can ensure that 
unanticipated page faults do not delay processors involved in a cooperative computation, thereby delaying other 
processors. J   6 

Shared memory multiprocessing applications require fine-grained scheduling control, lightweight threads [Anderson et al 921 
synchronizat.on [Anderson et al. 89], and information about memory system behavior. Multiprocessor applications        ' 
can rely on application-specific thread schedulers, or user-level thread management packages, for high performance 
in the presence of relatively fine-grain parallelism [Anderson et al. 89].  Implementing user-level threads on top of 



Runtime systems with memory system feedback 

Spindles enable low-level performance information to be inexpensively reflected back to applications. For example, 
a runtime system can install a spindle that decrements a counter each time an application takes a TLB miss within a 
particular range of virtual addresses. When the counter reaches zero, the spindle can notify the application, enabling 
it to restructure its virtual memory usage to reduce the load on the TLB. 

4.2    Summary 

Table 1 characterizes the relationship between application domains and some application-specific services that are 
enabled by SPIN. The table shows the extent to which SPIN'S structure facilitates high-performance applications in 
each of the domains. 

technique 

service and/or application 

general purpose 
computing 

multicomputing multiprocessing multimedia database 

extensible IPC V VV V VV VVV 
application level protocol 
processing 

V vvv vv V 

fast      simple      network 
communication 

vvv vvv 
application    specific    file 
systems 

VV vv vv vvv vvv 
synchronization V vvv vvv vv 
application controlled  vir- 
tual memory 

vv vv vv vvv vvv 
real-time scheduling vvv 
scheduler activations V vvv vvv V 
memory system feedback V V V vv vv 

Table 1: This table illustrates the applicability of different techniques enabled by spindles, and their importance 
for different application classes. One tick denotes some applicability, two ticks denote significant improvements in 
performance, and three ticks denote critical Improvements. 

5    Related work 

5.1    Extensibility and the operating system 

Extensibility has been the "holy grail" of operating systems design since "THE", one of the first modular operating 
systems [Dijkstra66]. An inflexible module structure and poor performance proved to be a substantial drawback 
of these systems. Early personal computer operating systems [Redeil et al. 80], which ran all system services and 
applications in a single address space, enabled applications to have good performance while being tightly coupled with 
the operating system. However, these systems offered no protection against rogue or buggy applications, making them 
inappropriate for multiuser environments. 



Application-level protocol processing 

IPC is an example of a more general style of interaction in which the applications implement a sophisticated commu- 
nication protocol such as TCP/IP entirely within application-level libraries. Spindles implement low-level data packet 
dispatching mechanisms that couple remote communication with application-level protocol processing. 

Fast, simple communication 

For many multicomputer applications, the per-message processing required by an application is substantially less than 
that needed to transmit the message reliably [Feiten 93]. Low-latency message passing spindles that run at interrupt- 
level can substantially improve parallel system performance. For example, active messages [von Ecken et al 921 are 
simple interrupt handlers that can be written as spindles, allowing them to run safely in a general purpose computer 
system where integrity is as important as performance. 

Application-specific file systems and buffer cache management 

An application-specific buffer cache manager for a file system can be implemented as a library that allows applications 
to access resident data with a simple procedure call but without data copying. A library-based buffer cache manager 
can provide for application-specific buffer management policies to ensure a high cache hit rate. Spindles can monitor 
page access patterns, and notify applications of changes in the current availability of the virtual memory pages used 
to contain buffer cache pages. A long-lived server can act as a caretaker for the buffer cache, guarding its contents as 
processes start and terminate, and ensuring consistency across multiple readers and writers. 

User-level scheduling 

In SPIN, a complete user-level scheduler can be implemented with a per-program spindle that emulates scheduler 
activations. The spindle, executed on every kernel-level thread context switch, sends a message to the thread's address 
space that reflects the change in scheduling state. A user-level library, in turn, implements application-specific thread 
management primitives. F 

Synchronization 

Synchronization mechanisms coordinate the activity of multiple threads of control that share memory Synchro- 
nization mechanisms that assume no contention for shared resources can have lower overhead than pessimistic ones 
that assume that contention will occur [Massalin & Pu 89, Stodolsky et al. 93]. In the general case these opti- 
mistic strategies require some form of kernel support to ensure correctness in the presence of an oblivious kernel 
scheduler [Bershad et al. 92, Bershad 93, Alemany & Feiten 92]. SPIN will make arbitrary synchronization strategies 
possible by reflecting scheduling decisions up to applications as they occur, or by providing an in-kernel rollback 
mechanism. An application that requires lightweight synchronization can install a spindle that executes on every 
thread preemption, ensuring the correctness of optimistic synchronization mechanisms. 

Real-time scheduling policies 

Spindles make it possible to implement a framework that allows applications to implement their own scheduling 
policies associated with low-level context switch and I/O events. 

Application-specific virtual memory 

Application-specific virtual memory can be implemented by providing an application with physical memory pages 
The application can create a spindle that provides access to low-level mapping operations, and another one that reflects 
page faults up to an application-specific library. 
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et al. have studied general meta-object protocols, which are interfaces to languages and systems that enable users to 
customize and extend the system's behavior [Kiczales et al. 91]. 

Although SPIN does not support general reflection, it does provide a controlled mechanism by which services can 
augment the kernel with their own specialized code sequences (spindles).' Previous reflective systems have suffered 
high overhead from the extra layers of abstraction. SPIN relies on dynamic compilation and partial evaluation to ensure 
good performance. 

Compiler optimization techniques 

Runtime compilation of code has been explored in several experimental systems, ranging from a Smalltalk environ- 
ment[Deutsch & Schiffman 84] to the implementation ofbit-transfer operations in raster graphics systems [Pike et al. 85] 
to debugging [Kessler 90]. Runtime code generation and optimization has also been used to produce speedups in 
traditional applications [Keppel et al. 93]. The Self and Cecil systems [Ungar & Smith 87, Chambers & Ungar'91, 
Chambers 93, Chambers 92] include automatic mechanisms for determining where optimizations can be cost effective, 
and may choose not to optimize in cases where performance will not be improved. SPIN will rely on similar heuristics. 
There has been little work in applying partial evaluation techniques at runtime, as required by SPIN. Most partial 
evaluation techniques are oriented towards static analyses. Moreover, existing techniques for partial evaluation do not 
address the problem of increased code size, which occurs when generating specialized instances of code. 

6    Status and directions 

We are developing SPIN in the context of the Mach 3.0 microkernel and the OSF/1 Unix server running on DEC 
Alpha workstations. We are partitioning the system statically into a SPIN component and a native (OSF/1) component. 
Existing OSF/1 binaries will continue to run by accessing the OSF/1 services that manage the native-component. 
SPIN will manage the SPIN component across applications that have been explicitly marked to run within SPIN. This 
approach allows us to slowly migrate away from a mixed-mode system to one that runs SPIN natively. With this, we 
will provide a set of OSF/1 services using the SPIN primitives. 

The advantages of the approaches taken in SPIN are not restricted to microkernel-based systems. Any system 
that provides a core set of services behind a fixed interface is subject to inadequate performance when faced with 
the "wrong" application. The flexible structures and solutions provided in SPIN are therefore also appropriate for a 
monolithic system. 

We intend to use SPIN both as a research target, enabling us to explore resource management mechanisms as we 
construct the system, and as a research vehicle, enabling us to explore resource management policies, as we use the 
system. SPIN will support applications in traditional domains, such as UNIX-style workstation computing, and newer 
domains, such as multimedia and multiprocessing. While we intend to use SPIN at the University of Washington as 
a self-hosting system, and to make it available in its pristine form to other universities and industrial sites, we expect 
that additional value will come with the transfer of a few key mechanisms and interfaces to commercial systems, such 
as OSF/1 and Windows-NT. These systems, as their application base grows, will be required to provide an application 
programming interface that facilitates fine-grained resource control. 
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Extensible services 

Previous research into extensible system services has addressed file systems [Rees et al. 86, Bershad & Pinkerton 88J 
scheduling [Anderson et al. 92], communication [Bershad et al. 91], and user-level memory management [Krue°er et ad 93 
McNamee & Armstrong 90, Harty & Cheriton 92, Sechrest & Park 91]. No system has provided an efficient way to ' ' 
compose multiple resources in a coherent manner. For example, with previous systems, in order for an application to 
cooperate with the kernel in making fine-grained CPU and memory allocation decisions, control must be transferred 
from the kernel to the application and back one or more times each time the kernel changes the °lobal resource 
allocation. This context switching overhead can put a high lower bound on the allocation granularity possible in the 
system. In contrast to this approach, SPIN provides a single framework in which extensible services can be build 

Packet filters 

Tfie packet filter offers an example of kernel extensibility [Mogul et al. 87]. A packet filter is run against each incomin« 
network packet to demultiplex data packets to higher level protocol software. With careful design, the packet filter 
is able to support protocol processing for a large number of applications [Yuhara et al. 94]. SPIN generalizes on the 
notion of the packet filter, enabling richer, more complex services to be safely installed into the kernel. 

Dynamic linking 

In systems such as Spring [Khalidi & Nelson 93], Chorus [Rozier et al. 88], and OSF/1 the kernel can be modified 
at run time with a new set of interface implementations for heavyweight services like device drivers or the Unix file 
system. Pure object code is downloaded "on-the-fly" from user-level into the kernel, exposing the kernel to protection 
violations. In contrast, with SPIN, extensibility is at the interface level (new kernel interfaces can be defined by 
applications), fine-grained (particular events within particular applications and threads), and safe (the extensions are 
validated both dynamically and statically). 

Synthesis 

The Synthesis system [Massalin & Pu 89] improved performance through the use of highly specialized and dynamically 
constructed interface implementations. For instance, a file open operation in Synthesis would return a handle to a piece 
of code optimized for accessing the opened file. However, both the interfaces and the scope of their implementation 
were limited to that which was pre-defined by the Synthesis kernel itself. This differs from SPIN, where applications 
are able to define both the interface to, and implementation of, system services. Hence, a SPIN application could create 
a file open interface whose implementation is optimized not only for the particular file, but also for the access patterns 
of the application. 

5.2    Language and compiler work 

The Fox Project 

The Fox project [Cooper et al. 91] applies advanced compiler technology to system software development. The primary 
focus of the research is on the extensions necessary to use the Standard ML programming language [Milner et al 89] 
in support of systems programming. Standard ML is a type-safe programming language with & rich module system 
that enables many of types of extensions that are available in SPIN. The Fox project has focussed on improvino the 
performance of the Standard ML compiler in the context of a standalone network service, and has not develop°ed a 
general operating system structure. 

Reflective systems 

Several systems have used reflection to create adaptable systems. A reflective system is one that includes mechanisms 
to monitor and modify its own behavior as it executes. In the Apertos operating system [ Yokote et al. 91], for example 
users customize the system's behavior by choosing among several reflective mechanisms for kernel services. Kiczales 
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